
姓名:张喜田
学科 :凝聚态物理
电话0451-88060349
邮箱xtzhangzhang@hotmail.com
办公室科学会堂B205
实验室科学会堂C311
研究方向:能源存储器件及其电极材料
✈ 教育经历
1983.09----1987. 07 吉林大学电子科学系半导体物理与器件专业学生;
1987.07----1989. 12 中科院长春物理所凝聚态物理专业硕士研究生,提前毕业;
2000.03----2002.06 中国科学院长春光学精密机械与物理研究所凝聚态物理专业博士研究生,提前毕业;
✈ 工作经历
1989年12月至2002年4月,哈尔滨师范大学物理系教师
2002年4月至2004年4月,哈尔滨师范大学理化学院物理系副主任
2004年4月至2008年1月,哈尔滨师范大学理化学院副院长(正处级)
2008年1月至 2015年7月,哈滨师范大学物理与电子工程学院院长
2015年7月至今,哈尔滨师范大学党委常委、副校长
2002年11月至2005年9月,香港中文大学物理系博士后研究员;
2005年9月至2007年9月,香港中文大学物理系研究助理教授
2009.07-----2009.10,以杨振宁学人名义访问香港中文大学。
✈ 荣誉称号
2009. 01----2011. 12 哈尔滨师范大学“龙江学者”特聘教授;
2010年获黑龙江省模范教师称号,黑龙江省研究生优秀导师;
2011年荣获黑龙江省优秀共产党党员荣誉称号;
2012年荣获黑龙江省高校师德先进个人和黑龙江省劳动模范。
2013年被聘为黑龙江省高等学校科技创新团队首席专家;
2014年获“黑龙江省高校优秀教师”荣誉称号
2014年获得“2013-2014年度黑龙江省高校教师年度人物”荣誉称号
✈ 科研项目
1.国家自然科学基金(2008.01-2010.12,主持,35万)(项目编号:60776010)
题目:复合氧化锌超晶格结构纳米线阵列的生长和电学性质
2.国家自然科学基金(2012.01-2015.12,主持,60万)(项目编号:51172058)
题目:一维InGaO3(ZnO)m异质超晶格纳米结构的可控合成及其场效应晶体管
3.国家自然基金(2015.1-2018.12,主持88万)项目编号:51472066
题目:过渡金属碳化物电极材料的设计、可控合成、锂离子嵌入及其电化学储能特性研究
4.国家自然科学基金(2018.01-2021.12,主持,60万)(项目编号:51772069)
题目:基于3D MXene 纳米结构构筑Li-S电池的正极材料及其电化学性能的研究(在研)
5.国家自然科学基金(2021.01-2024.12,主持,59万)(项目编号:52072099)
题目:基于Nafion/LixY(Y:F、N、O、P)复合材料构造Li-S电池中锂负极人工SEI膜及其稳定性的研究(在研)
✈ 科研成果
1.Mingyi Zhang, Lu Li and Xitian Zhang* One-dimensional Ag3PO4/TiO2 heterostructure with enhanced photocatalytic activity for the degradation of 4-nitrophenol. RSC Adv., 2015, 5, 29693–29697
2.M. Y. Zhang, L. Li, Y. Liu, L. L. Xu, X. T. Zhang*. Silver-decorated orthophosphate @ bismuth molybdate heterostructure: An efficient photocatalyst with two visible-light active components. Journal of Molecular Catalysis A: Chemical.2015,40:154~161
3.X. Y. Cao, X. Xing, N. Zhang, H. Gao, M. Y. Zhang*, Y. C. Shang and X. T. Zhang*, Quantitative investigation on the effect of hydrogenation on the performance of MnO2/H-TiO2 composite electrodes for supercapacitors. J. Mater. Chem. A, 2015,3,3785-3793
4.Ying Liu, Mingyi Zhang*, Lu Li, Xitian Zhang*, In situ ion exchange synthesis of the Bi4Ti3O12/Bi2S3 heterostructure with enhanced photocatalytic activity. Catalysis Communications 2015, 60, 23-26.
5.Mingyi Zhang, Ying Liu, Lu Li, Hong Gao, Xitian Zhang*, BiOCl nanosheet/Bi4Ti3O12 nanofiber heterostructures with enhanced, photocatalytic activity, Catalysis Communications 2015, 58, 122–126.
6.Ying Liu, Mingyi Zhang*, Lu Li, Xitian Zhang*, One-dimensional visible-light-driven bifunctional photocatalystsbased on Bi4Ti3O12 nanofiber frameworks and Bi2XO6 (X = Mo, W) nanosheet, Applied Catalysis B: Environmental, 2014, 160–161, 757–766.
7.Lu Li, Mingyi Zhang*, Ying Liu, Xitian Zhang,Hierarchical assembly of BiOCl nanosheets onto bicrystalline TiO2 nanofiber: Enhanced photocatalytic activity based on photoinduced interfacial charge transfer, Journal of Colloid and Interface Science, 2014, 435, 26–33.
8.J. Wen, X. T. Zhang, and H. Gao, Effect of the slab thickness on the crystal and electronic structures of In2O3(ZnO)m revealed by first-principles calculations, J. Solid State Chem. 222, 25 (2015).
9.H. X. Chuo, H. Gao, Q. Yang, N. Zhang, W. B. Bu, and X. T. Zhang, J. Mater. Chem. A, 2, 20462 (2014).
10.Y. L. Zheng, …X. T. Zhang, Bi1-xEuxPO4纳米荧光粉的制备、晶相调控及发光性能, 高等学校化学学报 35, 921 (2014)
11.H. X. Chuo, T. Y. Wang, and W. G. Zhang, “Optical properties of ZnSxSe1-x alloy nanostructures and their photodetectors”, J. Alloys and Compouds, 606, 231 (2014).
12.Q. Yang, X. T. Zhang, Y. Gao, H. Gao, X. C. Liu, H. Liu, K. W. Wong, and W. M. Lau, “Rationally designed hierarchical MnO2-shell/ZnO-nanowire/carbon-fabric for high-performance supercapacitor electrodes”, J. Power Sources, 272, 654 (2014).
13.L. L. Wu, H. D. Zang, Y. C. Hsiao, X. T. Zhang, and B. Hu, “Origin of the fill factor loss in bulk-heterojunction organic solar cells”, Appl. Phys. Lett., 104, 153903 (2014).
14.T. Y. Wang, X. T. Zhang, J. Wen, T. T. Chen, X. Z. Ma, and H. Gao, “Diameter-dependent luminescence properties of ZnO wires by mapping”, J. Phys. D, 47, 175304 (2014).
15.J.Y. Dong, X.T. Zhang The preparation and electrochemical characterization of urchin-like NiCo2O4 nanostructures. Applied Surface Science, 332, 2015, Pages 247-252
16.L. L. Wu and X. T. Zhang, Facile fabrication of ZnO:S/ZnO hetero-nanostructures and their electronic structure investigation by electron energy loss spectroscopy. CrystEngComm, 2015,17, 2250-2254
17. W. Chen, N. Zhang, M. Y. Zhang*, X. T. Zhang, H. Gao, and J. Wen, “Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis”, CrystEngComm. 16, 1201 (2014).
18 J. Wen, X. T. Zhang, H. Gao, and M. J. Wang, Current–voltage characteristics of the semiconductor nanowires under the metal-semiconductor-metal structure, J. Appl. Phys. 114, 223713 (2013).
19. N. Zhang, W. Tang, P. Wang, X. T. Zhang*, and Z. Zhao, “In situ enhancement of NBE emission of Au-ZnO composite nanowires by SPR”, CrystEngComm. 15, 3301 (2013).
20. X. T. Zhang, et al., “Side by side ZnO/ZnS hetero-junction nanocrystal arrays with superior field emission property”, CryrstEngComm. 15, 1908 (2013).
21. Q. Gao, J. Wen, X. Liu, L. L. Wu, H. Gao, and X. T. Zhang*, “Routes to Probe Strain in “ZnO/ZnS Superlattice” Nanostructures by X-Ray Diffraction”, J. Phys. Chem. C 117, 14247 (2013).
22. P. Wang, X. T. Zhang*, et al., “Synthesis and field-emission properties of novel hierarchical ZnO hexagonal towers”, J. Alloys Compd. 88, 533 (2012).
23. J. Wen, L. L. Wu, and X. T. Zhang*, “A unique arrangement of atoms for the homologous compounds InMO3(ZnO)(m) (M = Al, Fe, Ga, and In)”, J. Appl. Phys. 111, 113716 (2012).
24. L. L. Wu, Q. Li, X. T. Zhang*, T. Y. Zhai, Y. Bando and D. Golberg, “Enhanced field emission performanece of Ga-doped In2O3(ZnO)3 superlattice nanobelts”, J. Phys. Chem. C 115, 24564 (2011).
25. Y. M. Xu, L. Shi, X. T. Zhang, K. W. Wong and Q. Li, “The electron beam irradiation damage on nanomaterials synthesized by hydrothermal and thermal evaporation methods—An example of ZnS nanostructures”, Micron 42, 290 (2011).
26. J. Liu, L. L. Xu, B. Wei, W. Lu, H. Gao and X. T. Zhang*, “One-step hydrothermal synthesis and optical properties of aluminium doped ZnO hexagonal nanoplates on a zinc substrate”, CrystEngComm. 13, 1283 (2011).
27. L. L. Wu, F. W. Liu and X. T. Zhang*, “Group III element-doped ZnO twinning nanostructures”, CrystEngComm 13, 4251 (2011).
28. W. Tang, D. L. Huang, L. L. Wu, C. Z. Zhao, L. L. Xu, H. Gao and X. T. Zhang*, “Surface plasmon enhanced ultraviolet emission and observation of random lasing from self-assembly Zn/ZnO composite nanowires”, CrystEngComm 13, 2336 (2011).
29. J. Y. Zhang, Y. Lang, Z. Q. Chu, X. Liu, L. L. Wu and X. T. Zhang*, “Synthesis and transport properties of Si-doped In2O3(ZnO)3 superlattice nanobelts”, CrystEngComm. 13, 3569 (2011).
30. B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang* and Q. G. Meng, “Enhancement of near-band edge emission of Au/ZnO composite nanobelts by surface plasmon resonance”, CrystEngComm 13, 3678 (2011).
31. X. Liu, D. L. Huang, L. L. Wu, X. T. Zhang*, and W. G. Zhang, “Novel photoluminescence properties of InAlO3(ZnO)m superlattice nanowires”, Chin. Phys. B 20, 078101 (2011).
32. D. L. Huang, L. L. Wu, and X. T. Zhang*,“Size-dependent InAlO3(ZnO)m nanowires with a perfect superlattice structure”, J. Phys. Chem. C 114, 11783 (2010).
33. X. L. Xu, A. C. Irvine, Y. Yang, X. T. Zhang*, D. A. Williams, “Coulomb oscillations of indium-doped ZnO nanowire transistors in a magnetic field”, Phys. Rev. B 82, 195309 (2010).
34. X. L. Xu, F. S. F. Brossard, D. A. Williams, D. P. Collins, M. J. Holmes, R. A. Taylor, and X. T. Zhang*, “Cavity modes of tapered ZnO nanowires”, New J. Phys. 12, 083052 (2010).
35. B. J. Niu, L. L. Wu, and X. T. Zhang*, “Low-temperature synthesis and characterization of unique hierarchical In2O3(ZnO)10 superlattice nanostructures”, CrystEngComm. 12,3305 (2010).
36. L. L. Wu, F. W. Liu, Z. Q. Chu, Y. Liang, H. Y. Xu, H. Q. Lu, X. T. Zhang*, Q. Li, and S. K. Hark, “High-yield synthesis of In2-xGaxO3(ZnO)3 nanobelts with a planar superlattice structure”, CrystEngComm 12, 2047 (2010).
37. L. L. Wu, Y. Liang, F. W. Liu, H. Q. Lu, H. Y. Xu, X. T. Zhang*, and S. K. Hark, “Preparation of ZnO/In2O3(ZnO)n heterostructure nanobelts”, CrystEngComm 12, 4152 (2010).
38. H. Q. Lu, L. L. Wu, E. Zhang, and X. T. Zhang*, “Formation and photoluminescence of one-dimensional SiOx dot array–ZnO nanobelt heterostructure”, CrystEngComm 12, 85 (2010).
39. Z. M. Li, H. Gao, L. L. Wu, and X. T. Zhang*, “Observation of the First Excited State of A-Exciton in ZnO Nanocombs”, J. Nanosci.Nanotechnol.10, 1891 (2010)
40. L. L. Wu, Z. G. Gao, E. Zhang, H. Gao, H. Li, X. T. Zhang*, “Synthesis and optical properties of N–In codoped ZnO nanobelts”, J. Lumin. 130, 334 (2010).
41. X. T. Zhang*, H. Q. Lu, H. Gao, X. J. Wang, H. Y. Xu, Q. Li, and S. K. Hark, “Crystal Structure of In2O3(ZnO) m Superlattice Wires and Their Photoluminescence Properties”, Crystal Growth & Design 9, 364-367 (2009).
42. X. L. Xu, F. S. F. Brossard, D. A. Williams, D. P. Collins, M. J. Holmes, R. A. Taylor, and X. T. Zhang*, “Mapping cavity modes of ZnO nanobelts”, Appl. Phys. Lett. 94, 321103-5 (2009).
43. H. Y. Xu, Z. Liu, Y. Liang, Y. Y. Rao, X. T. Zhang, and S. K. Hark, “Structure and photoluminescence of wurtzite/zinc-blende heterostructure GaN nanorods”, Appl. Phys. Lett. 95, 133108-20 (2009).
44. L. L. Wu, X. T. Zhang*, Y. Liang, and H. Y. Xu, “Synthesis of In-doped ZnGa2O4 nanobelts and its enhanced cathodoluminescence”, J. Alloy Compd. 468, 452-4 (2009).
45. Z. Liu, X. T. Zhang, and S. K. Hark, “Aligned growth of ZnCdSe nano-arrowheads”, Crystal growth and Design 9, 803-6 (2009).
46. G. Z. Wang, S. M. Selbach, Y. D.Yu, X. T. Zhang, T. Grandea and MA. Einarsrud,, “Hydrothermal synthesis and characterization of KNbO3 nanorods”, CrystEngComm. 11, 1958 (2009).
47. L. L. Wu, X. T. Zhang*, Z. F. Wang, Y. Liang, and H. Y. Xu, “Synthesis and optical properties of ZnO nanowires with a modulated structure”, J. Phys. D 41, 195406 (2008) (SCI; 引用6次; IF: 2.083).
48. H. Y. Xu, Y. Liang, Z. Liu, X. T. Zhang, and S. K. Hark, “Synthesis and optical properties of tetrapod-like ZnSSe alloy nanostructures”, Adv. Mater. 20, 3294 (2008) (SCI; 引用11次; IF: 8.379).
49. Z. Liu, X. T. Zhang, and S. K. Hark, “Quadra-twin model for growth of nanotetrapods and related nanostructures”, J. Phys. Chem. C 112, 8912 (2008) (SCI ; 引用4次; IF: 4.224).
50. X. T. Zhang, Z. Liu, Z. Zheng, and S. K. Hark, “Controlled growth of highly aligned amorphous SiOx sunflower-like morphology”, J. Mater. Res. 23, 1667 (2008) (SCI; 引用1次; IF: 1.667).
51. X. T. Zhang, Y. Y. Rao, Y. Liang, R. Deng, Z. Liu, S. K. Hark, Y .k. Yuen and S. P. Wong, “Synthesis of octahedral ZnGa2O4 particles and their field-emission properties”, J. Phys. D 41, 095104 (2008) (SCI; 引用3次; IF: 2.083).
52. X. T. Zhang, Z. Liu and S. K. Hark, “Synthesis and cathodoluminescence of beta-Ga2O3 nanowires with holes”, J. Nanosci. Nanotechnol. 8, 1284 (2008) (SCI; 引用1次; IF: 1.435).
53. R. Deng, X. T. Zhang*, “Effect of Sn concentration on structural and optical properties of zinc oxide nanobelts”, J. Lumin. 128, 1442 (2008) (SCI; 引用12次; IF: 1.847).
54. C. Z. Zhang, H. Gao, D.Zhang, X. T. Zhang*, “Local Homoepitaxial Growth and Optical Properties of ZnO Polar Nanoleaves”, Chin. Phys. Lett. 25, 302 (2008)
55. Z. Zheng, A. Liu, S. Wang, B.J. Huang, K.W. Wong, X. T. Zhang, S. K. Hark and W. M. Lau, “Growth of highly oriented (110) -CuI film with sharp exciton band”, J. Mater. Chem. 18, 852 (2008)
56. H. Gao, H. Ji, X. T. Zhang*, H. Q. Lu, and Y. Liang, “Indium-doped ZnO nanospirals synthesized by thermal evaporation”, J. Vac. Sci. Techonol. B 26, 585 (2008)
57. X. H. Li, C. L. Shao, Y. C. Liu, X. T. Zhang, S. K. Hark, “Preparation, structure and photoluminescence properties of SiO2/ZnO nanocables via electrospinning and vapor transport deposition”, Mater. Lett. 62, 2088 (2008)
58. H. W. Song, H. Q. Yu, G. H. Pan, X.Bai, B. Dong, X. T. Zhang, and S. K. Hark, “Electrospinning Preparation, Structure, and Photoluminescence Properties of YBO3:Eu3+ Nanotubes and Nanowires”, Chem. Mater.20, 4762 (2008).
59. H. Gao, X. T. Zhang*, M. Y .Zhou, Z. G. Zhang and X. Z .Wang , ‘’Growth of novel ZnO nanohelices modified by SiO2-sheathed ZnO discs’’, Nanotechnology 18, 065601-065604 (2007).
60. X. T. Zhang, Z. Liu, Z. Zheng , S. K. Hark, Y. B. Fu, and G. B. Zhang, “Synthesis and photoluminescence properties of well-aligned Ga-doped N-rich SiOxNy nanowire bundles”, Appl. Phys. Lett. 90, 183110-183112 (2007).
61. R. Deng, X. T. Zhang*, E. Zhang, Y. Liang, Z. Liu, H. Y. Xu, and S. K. Hark, “Planar defects in Sn-doped single-crystal ZnO nanobelts”, J. Phys. Chem. C 111, 13013-13015 (2007).
62. X. T. Zhang, Z .Liu, C. C. Wong, S. K. Hark, N. Ke, and S. P. Wong, “Fabrication and optical properties of erbium-doped silicon-rich silicon oxide nanofibers”, J. Phys. Chem. C 111, 4083-4086 (2007).
63. H. Y. Xu, Z. Liu, X. T. Zhang, and S. K. Hark, “Synthesis and optical properties of InN nanowires and nanotubes”, Appl. Phys. Lett. 90, 113105-113107 (2007).
64. X. T. Zhang, Z. Liu, and S. K. Hark, “Synthesis and optical characterization of single-crystalline AlN nanosheets”, Solid State Comm. 143, 317-20 (2007).
65. L. Hong, Z. Liu, X. T. Zhang, and S. K. Hark, “Self-catalytic growth of single-phase AlGaN alloy nanowires by chemical vapor deposition”, Appl. Phys. Lett.,89, 193105 (2006).
66. Y. Liang, X. T. Zhang*, L. Qin, E. Zhang, H. Gao, and Z. G. Zhang, “Ga-assisted synthesis and optical properties of ZnO submicron- and nanotowers”, J. Phys. Chem. B 110,21593-21595 (2006).
67. H. Gao, X. T. Zhang, M. Y. Zhou, E Zhang and Z. G. Zhang, “Super-uniform ZnO nanohelices synthesized via thermal evaporation”, Solid State Comm. 140, 455 (2006).
68. C. X. Shan, Z. Liu, X. T. Zhang, C. C. Wong, and S. K. Hark, “Wurtzite ZnSe nanowires: growth, photoluminescence, and single-wire Raman properties”, Nanotechnology 17, 551-4 (2006).
69. X. T. Zhang, Z. Liu, C. C. Wong, and S. K. Hark, “Synthesis and optical properties of single crystalline GaN nanorods, with a rectangular cross-section”, Solid State Comm. 139, 38-90 (2006).
70. L. Qin, X. T. Zhang*, Y. Liang, E Zhang, H. Gao and Z. G. Zhang, “Resonant Raman scattering and “negative thermal quenching”of ZnO microflowers”, Acta Phys. Sin. 55, 3119 (2006).
71. L. Qin, X. T. Zhang*, Y. Liang, E Zhang, H. Gao and Z. G. Zhang, “Preparation and characterization of nanocrystalline chromium boride”, J. Mater. Sci. 41, 7617 (2006).
72. Y. Liang, X. T. Zhang*, Z. Liu, L. Qin, E Zhang, C. Z. Zhao, H. Gao and Z. G. Zhang, “Local homoepitaxy and optical properties of well-ordered ZnO nanowires”, Physica E 33, 191 (2006).
73. X. F. Zhao, T. L. Y. Cheung, X. T. Zhang, D. H. L. Ng, and J. G. Yu, “Facile preparation of strontium tungstate and tungsten trioxide hollow spheres”, J. Am. Ceram. Soc. 89, 2960-3 (2006).
74. X. T. Zhang, Z. Liu, Q. Li, Y. Leung, K. Ip, and S. Hark, “Routes to grow well-aligned arrays of ZnSe nanowires and nanorods”, Adv. Mater., 17, 1405-1410 (2005).
75. X. T. Zhang*, K. M. Ip, Q. Li, and S. K. Hark, “Photoluminescence of Ag-doped ZnSe nanowires synthesized by metalorganic chemical vapor deposition”, Appl. Phys. Lett. 86, 203114-7 (2005).
76. X. T. Zhang, Z. Liu, Q. Li, and S. K. Hark, “Growth and luminescence of ternary semiconductor ZnCdSe nanowires by metalorganic chemical vapor deposition”, J. Phys. Chem. B 109, 17913-6 (2005).
77. X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Quan Li and S. K. Hark, “Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition”, Appl. Phys. Lett. 84, 2641 (2004).
78. X. T. Zhang, Z. Liu, K. M. Ip, Y. P. Leung, Quan Li and S. K. Hark, “Luminescence of ZnSe nanowires grown by metal organic vapor phase deposition under different pressures”, J. Appl. Phys. 95, 5752 (2004).
79. X. T. Zhang, Y.C. Liu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. W. Fan and X. G. Kong, “Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films”, J. Cryst Growth 254, 80 (2003).
80. Z. Z. Zhi, Y. C. Liu, B. S. Li, X. T. Zhang, Y. M. Lu, D. Z. Shen and X W Fan, “Effects of thermal annealing on ZnO films grown by plasma enhanced chemical vapour deposition from Zn(C2H5)2 and CO2 gas mixtures”, J. Phys. D 36, 719 (2003).
81. X. T. Zhang, Z. Y. Xiao, W. L. Zhang, H. Gao, Y. X. Wang, Y. C. Liu, J. Y. Zhang and W. Xu, “A study on photoluminescence characterization of high-quality nanocrystalline ZnO thin films”, Acta Phys. Sinica 52, 740 (2003).
82. X. T. Zhang, Z. Liu, Y. P. Leung, Quan Li, and S. K. Hark, “Growth and luminescence of zinc-blende-structured ZnSe nanowires by metal-organic chemical vapor deposition”, Appl. Phys. Lett. 83, 5533 (2003).
83. X. T. Zhang, Y. C. Liu, J. G. Ma, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong and X. W. Fan, “Blue cathodoluminescence from highly Er-doped ZnO thin films induced by the phonon bottleneck effect”, Chin. Phys. Lett. 20, 401 (2003).
84. X. T. Zhang, Y. C. Liu, L. G. Zhang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan and X. G. Kong, “Structure and optically pumped lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films”, J. Appl. Phys. 92, 3293 (2002).
85. X.T. Zhang, Y.C. Liu, J. G. Ma, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong and X.W. Fan, “Room-temperature blue luminescence from ZnO:Er thin films”, Thin Solid Films 413, 257 (2002).
86. X. T. Zhang, Y.C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, W. Xu, D. Z. Shen, G. Z. Zhong, X. W. Fan and X.G. Kong, “High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films”, J. Cryst Growth 240, 463 (2002).
87. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, and X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films”, J. Lumin. 99, 149 (2002).
88. X. T. Zhang, Y. C. Liu, L. G. Zhang, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan and X. G. Kong, “Photoluminescence and optically pumped ultraviolet lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of high-quality ZnS thin films”, Chin. Phys. Lett. 19, 127 (2002).
89. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan and X. G. Kong, “Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films”, J. Phys. D 34, 3430 (2001).